학창시절 언젠가 부분분수를 배운 적이 분명히 있는 것 같은데,
잘 기억이 나질 않습니다...
이 놈의 머리는 기억력이 참...
당시 집중해서 공부하지 않았던 제 탓이겠죠.
아무튼 그래서
이번 포스팅에서는 부분분수를 확인해보려 합니다.
간단한 부분분수 하는 방법을 이용해서
2차부터 4차까지 진짜 맞게 분해가 되는 것인지 확인해 보도록 하겠습니다.
왜 이런 짓을 했냐고요?
문득 의심이 들었거든요...
진짜 이렇게 분해하면 맞게 분해가 되는건가? 하는...의심이요.
전 왜 이럴까요. 문득 이런 것들에 대한 의문이 드네요. 하...
피곤한 인생이지만, 그래도 의심이 들은 김에 기록해 두려 합니다.
이렇게 한 번 해서 기록해두면, 나중에 시간이 흘러 또 똑같은 짓은 안하고 있겠죠...
제가 무식하게 확인해 볼테니, 여러분들은 눈으로 보고 참고하시면 됩니다.
진행 방식은 부분분수를 해보고,
다시 풀어서 써서 처음식과 동일하게 나오는지 확인하는 방식으로
검증해 보겠습니다.
1. 부분분수 해보기 _ 2차 함수
① 부분분수
부분분수 해 볼 타겟은 임의로 정했습니다. 위의 식을 부분분수 해보죠.
- A를 구하기 위해서, 원래의 식에서 (x+1) 부분을 제거하고, -1을 대입해 줍니다. 1이 나오네요. A = 1
- B를 구하기 위해서, 원래의 식에서 (x+2) 부분을 제거하고, -1를 대입해 줍니다. -1이 나오네요. B = -1
따라서,
이렇게 분해가 되네요.
② 역으로 검증
맞게 분해가 된 것일까요? 확인을 위해 역으로 계산을 해봅시다.
원래 식과 동일하게 나오네요.
- 확인 결과 : OK !
2. 부분분수 해보기 _ 3차 함수
① 부분분수
- A를 구하기 위해, 원래의 식에서 x 부분을 제거하고, 0을 대입. A = 1/2
- B를 구하기 위해, 원래의 식에서 (x+1) 부분을 제거하고, -1을 대입. B = -1
- C를 구하기 위해, 원래의 식에서 (x+2) 부분을 제거하고, -2를 대입. C = 1/2
따라서,
이렇게 분해가 되네요.
② 역으로 검증
이번에도 통분을 하니, 원래의 식과 동일한 형태가 나옵니다.
- 확인 결과 : OK !
3. 부분분수 해보기 _ 4차 함수
① 부분분수
- A를 구하기 위해, 원래의 식에서 x 부분을 제거하고, 0을 대입. A = 1/6
- B를 구하기 위해, 원래의 식에서 (x+1) 부분을 제거하고, -1을 대입. B = -1/2
- C를 구하기 위해, 원래의 식에서 (x+2) 부분을 제거하고, -2를 대입. C = 1/2
- D를 구하기 위해, 원래의 식에서 (x+3) 부분을 제거하고, -3을 대입. D = -1/6
따라서,
이렇게 분해가 되었습니다.
② 역으로 검증
이번에도 통분을 하니, 원래의 식과 동일한 형태가 나옵니다.
- 확인 결과 : OK !
그동안 잊고 살았더니 가물가물 했었는데,
이번 기회에 귀찮긴 했지만 이렇게 확인을 해봤으니, 그걸로 만족하죠 뭐!
시간이 지나 또 가물가물 해지면, 이 포스팅을 다시 확인해 보고 리마인드 시키면 되죠!
'전기 > 개념 이해하기' 카테고리의 다른 글
[연료전지] 연료전지 원리 이해하기 (1) | 2023.04.17 |
---|---|
[연료전지] 연료전지 맛보기 (2021 인천 수소연료전지 포럼 내용 요약) (0) | 2023.04.03 |
[Power Factor] Power Factor 란 무엇일까? 바로 알아보기 #2 (0) | 2023.03.30 |
[Power Factor] Power Factor 란 무엇일까? 바로 알아보기 #1 (0) | 2023.03.30 |
플레밍의 왼손법칙과 오른손법칙... 헷갈릴 때! 내 맘대로 기억하기 (1) | 2023.03.27 |